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Abstract

Rigorous data analysis techniques are essential in quan-
tifying the differential expression of proteins in biologi-
cal samples of interest. Statistical methods from the mi-
croarray literature were applied to the analysis of two-
dimensional difference gel electrophoresis (2-D DIGE)
proteomics experiments, in the context of technical vari-
ability studies involving human plasma. Protein expres-
sion measurements were corrected to account for ob-
served intensity-dependent biases within gels, and nor-
malized to mitigate observed gel to gel variations. The
methods improved upon the results achieved using the
best currently available 2-D DIGE proteomics software.
The spot-wise protein variance was reduced by 10% and
the number of apparently differentially expressed proteins
was reduced by over 50%.

1 Motivation

Understanding systems biology is a major scientific chal-
lenge. While the genomes of several species have been
fully sequenced, the biochemical functions of many genes
have not yet been determined. Genes encode proteins,
which in turn perform all biochemical functions neces-
sary for life. After genomics (the study of genes in an or-
ganism), proteomics (the study of proteins and their func-
tions) is a next, and more difficult, step in understanding
cellular biology and the mechanism of diseases.
Two-dimensional difference gel electrophoresis (2-D
DIGE) is a leading proteomics technology that investi-
gates simultaneously the proteomes of different biologi-
cal samples. The proteins that are differentially expressed
in the different samples hold the biological clues of in-
terest. The proteomics team within the Biodefense group

in the Biosciences directorate at LLNL led by Dr. San-
dra L. McCutchen-Maloney is at the forefront of 2-D
DIGE research. They have conducted the largest and
most complex experiments in the world on this platform
to date (according to our literature survey), and they have
a large number of future investigations planned. Their
current experiments involve mouse and ex vivo human
samples exposed to pathogens such as Bacillus anthracis
(the causative agent of anthrax) and Yersinia pestis (the
causative agent of plague). They use DeCyder, the best
commercially available product (GE Healthcare), to ana-
lyze their experiments. However, they are concerned that
the limited statistical techniques in DeCyder are not ade-
quate for analyzing rigorously their experiments.

The analytical tools in DeCyder permit rudimentary
statistical analysis, but they have several shortcomings.
For example, the system was designed for small studies,
not the large throughput experiments characteristic to ex-
periments carried out in the Biosciences directorate. In
addition, the data normalization methods and the quantifi-
cation of the differential expression of the proteins could
be improved by incorporating recent advances in statisti-
cal techniques. Genomics datasets from microarray chip
experiments have encountered similar normalization and
expression quantification problems in the past. Since
genomics is a more mature field than proteomics, open
source software for analyzing microarrays has already in-
corporated the improved statistical methodology.

This project introduced state-of-the-art software to the
problem of analyzing 2-D DIGE in CAR and the Bio-
sciences directorate. The major steps of the solution ap-
proach involved:

e Obtaining 2-D gels from biological experiments

e Analyzing the gels with the best commercially avail-
able proteomics software



e Analyzing the gels with the open source microarray
analysis software

e Comparing the results of the two previous steps and
quantifying the differences

2 Description of 2-D DIGE

Two-dimensional polyacrylamide gel electrophoresis (2-
D PAGE) is a technology by which thousands of proteins
in a biological sample are separated according to their iso-
electric points and molecular weights [10, 6, 9]. In theory,
each protein is uniquely determined by its response along
the two dimensions of separation. Differences in the pro-
teomes of multiple samples can be studied by comparing
the expression profiles of the proteins on the gels. In tra-
ditional 2-D PAGE, each gel contains one sample which
is compared to samples on different gels, introducing high
experimental variability.

Two-dimensional difference gel electrophoresis (2-D
DIGE) was proposed in [14] as a method to overcome gel
to gel variability inherent in 2-D PAGE. More recently,
2-D DIGE has been commercialized through the Ettan
DIGE System of Amersham Biosciences (now part of GE
Healthcare) thanks to the development of the three size
and charge-matched, spectrally resolvable CyDye fluors
Cy2, Cy3 and CyS. Gels using the DIGE method con-
tain three samples labeled with the three distinct fluores-
cent dyes Cy2, Cy3, and Cy5. Typically, two dyes are
used to label two different biological samples of interest.
The third dye can be used to label the “internal standard”
which is a pooled mixture of all the samples used in the
experiment, and is identical an all gels. The power of the
internal standard is in its potential to adjust for the vari-
ability between gels and thus make the data across the
experiment more comparable. The DeCyder Differential
Analysis Software is part of the Ettan DIGE System, and
is used for analyzing the data and quantifying the differ-
ential expression of the proteins [13, 1, 2].

Although there are fundamental differences in 2-
D DIGE and gene expression microarray technologies,
many of the difficulties encountered in the analysis of 2-D
DIGE data are similar to problems that arise in the anal-
ysis of microarray experiments: proper normalization of
the data within and between the gels (arrays), multiple hy-

Table 1: The datasets, as indicated under the Name head-
ing. The Gel column indicates whether the gels were
poured in the lab or bought from a vendor. The Filt
column specifies whether an exclusion filter was applied
to the initial spots detected on the gels. The Landmrk
column indicates whether manual landmarking was per-
formed when matching the spots across the gels.

Name Gel Filt Landmrk
LabNoFiltNoLandmrk Poured No No
LabFiltNoLandmrk Poured Yes No
LabNoFiltLandmrk Poured No Yes
PrecastNoFiltNoLandmrk | Bought No No
PrecastNoFiltLandmrk Bought No Yes

pothesis testing, and the quest for improved test statistics
that exploit the common information across the proteins
(genes) [7, 8, 12, 5, 4].

As data from 2-D DIGE experiments exhibited simi-
lar characteristics to microarray datasets, methods devel-
oped by researchers in the microarray field were adapted
to address statistical challenges in analyzing proteomic
data from 2-D DIGE experiments. Section 3 describes
the experiments used in this study and the proposed anal-
ysis methods. Section 4 contains the results, and Section 5
concludes with a summary.

3 Materialsand methods

To ensure objective comparison of the methods, technical
variability experiments were performed where the same
biological sample was ran on a number of different gels.
In the absence of biological variation among the sam-
ples, the observed protein expression differences can be
attributed to the technical variation in the 2-D DIGE pro-
cess. The analysis methods can then be compared based
on their ability to reduce the variability in the measure-
ments corresponding to the same spot, and in their ability
to reduce the number of proteins that appear to be differ-
entially expressed. Human serum samples were used, to
test the methods with the most complex, and difficult to
analyze, proteome.



One Human Serum Sample

[ //I

& B

1 \\""

T — |
Sample Fractionated Through One Immunoaffinity Column BX
Tricholaracetic Acid Clean-Up of Sunplas

TR0

Trlpltate Samples: 24 Samples or 2 Samples/

AN

LI 0

i
|11

4 1 1 1 1 1 8

Figure 1: Sample processing workflow.

Five datasets were available for this study that differed
on the type of gel used, and whether the spots were filtered
or landmarked. Table 1 presents the details, along with
the naming convention that will be used throughout this
report. Three of the experiments involved gels poured in
the lab, and two used Snap-A-Gel Precast gels manufac-
tured by Jule Inc. (Milford, CT). To investigate the effect
of eliminating spots that are likely to be dust particles or
other artifacts, filtering was used in one dataset. In three
experiments, spot matching was performed automatically
across the gels, and two involved manual landmarking.

3.1 Sample preparation and gel processing

Blood was collected via venipuncture from a volunteer
with informed consent under the Institutional Review
Board approval from Lawrence Livermore National Lab-
oratory. The blood was then split into 8 samples labeled
A through H as shown in Fig. 1. After the sample pro-
cessing steps (detailed in the remaining of this section),
the 24 samples were arranged on 12 gels according to the

experimental design in Table 2.

Samples were processed via HPLC to remove the top
6 high-abundant proteins (albumin, IgG, antitrypsin, IgA,
transferrin, and haptoglobin) using an Agilent Technolo-
gies HU6 Multiple Affinity column. 404 of each sample
was combined with 160, L Buffer A in a spin filter tube
and filtered by spinning for 1 minute at 12000 rpm. Sam-
ples were loaded into a Shimadzu injector tube and placed
into the sample injector rack. The AgilentHuman.met
method was used along with the 8/11/04 Plasma Clean-
up via FPLC/HPLC protocol.

1000 L of the low-abundant protein fraction was
cleaned-up using the 2/23/04 TCA + Amersham Wash
Additive Protocol and was resuspended in a volume of
754 L. The protein concentration of each cleaned-up sam-
ple was found using the ADVO1 protein assay. 50pug of
each cleaned sample was labeled with 400pm of the ap-
propriate CyDye for each analytical gel according to the
experimental design in Table 2.

The labeled samples were separated by pI using Immo-
biline pH 3-10 NL DryStrips following the 2/23/04 pro-



Table 2: The experimental design.

Gel #
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tocol for DIGE Labeling and First Dimension using the
IPGphor II. The samples were alkylated and rehydrated
using DTT followed by IAA following the 2/23/04 proto-
col for Second Dimension (SDS-PAGE). Samples were
electrophoresed on Jule Snap-A-Gels (12.5D10ELOG)
12.5% acrylamide with a 38:1 acrylamide to bisacry-
lamide ratio. Second dimension electrophoresis was car-
ried out in the Ettan Dalt Twelve Separation Unit fol-
lowing the 2/23/04 protocol for Second Dimension (SDS-
PAGE). A deviation from the lab protocol was made for
the SDS concentration in the 1x and 2x running buffers in
order to follow the Jule’s suggested SDS concentration for
Snap-A-Gels. The gels poured in the lab were prepared
following standard 2-D DIGE protocol recommended by
GE Healthcare.

The gel images were scanned on the Typhoon using
the 2/23/04 Imaging DIGE Gels on the Typhoon proto-
col. The images were cropped using ImageQuant v5.2
to eliminate the edges of the gels and any major defects,
while maximizing the number of spots available for anal-
ysis. By not cropping areas with minor defects the num-
ber of spots requiring manual verification increases, but so
does the opportunity to find differentially expressed pro-
teins. All gel images were cropped to be the same size.

Images were renamed to allow quicker references
within DeCyder and processed using the DeCyder Batch
Processor. The estimated number of spots to detect on

each gel was set to 2500, after manually exploring the
best number of spots using the Differential In-gel Analy-
sis (DIA) module of DeCyder. The master gel was auto-
matically set to the gel with the greatest number of spots.
If visual inspection indicated problems on the automat-
ically selected master gel, the master gel was re-selected
manually. Each sample was grouped for Biological Varia-
tion Analysis (BVA) according to the A - H sample names
for the primary analysis. The original BVA files from the
fully automated analysis were saved for future analysis.

Filtering to eliminate possible dust particles and other
artifacts from the analysis was performed on the Lab-
FiltNoLandmrk dataset (Table 1). Spots were eliminated
from future analyses based on the following thresholds
for four variables available in DeCyder: Slope > 1.1,
Area < 100, Peak Height < 100, and Volume < 10000.
For each spot, Slope refers to the gradient in the three-
dimensional intensity view, Area is the number of pixels
within the spot boundary, Peak Height is the maximum
intensity value over the spot boundary, and Volume is the
integrated intensity over the spot boundary.

The LabNoFiltLandmrk and the PouredNoFiltLandmrk
(Table 1) datasets involved manual landmarking. Gels
were landmarked to the master gel until all areas appeared
to be matched correctly. When areas were found to be in-
correctly matched addition landmarks were added and the
gels were re-matched. Once the quality of matching for
all gels was deemed sufficient analysis proceeded to de-
termine the variation between samples.

3.2 Analysisusing DeCyder

DeCyder version 5.01 was used for spot detection and
matching across the gels. Both the Differential In-gel
Analysis (DIA) and the Biological Variation Analysis
(BVA) modules were used: the former to codetect and
quantify the spots on a given gel in terms of ratios of the
Cy3 and Cy5 sample volumes to the standard Cy2 vol-
ume, and the latter to match the spots and standardize the
ratios across the gels accounting for differences in the Cy2
volumes on the gels.

For each spot on each gel in each set of experiments,
DeCyder provided measurements on several variables.
The analyses here were based on the spot volumes, nor-
malized volumes, and standardized log abundance ratios
defined below. Volume of a spot for a given dye is de-



fined as the fluorescent intensity of the corresponding
dye integrated over the area of a spot. Normalized vol-
ume refers to the volume normalized across the three
dyes and across the gels. Let VolCy2,,, VolCy3,,, and
VolCyb5,4 denote the volumes of spot p on gel g, as mea-
sured by the three different dyes Cy2, Cy3, and Cy5, re-
spectively. Similarly, let NVolCy2,4, NV olCy3,4, and
NVolCy5,, denote the corresponding normalized vol-
umes. To quantify the protein expression changes in a
comparable manner across all the spots and gels, De-
Cyder forms the ratios of the normalized volumes of a
spot labeled with the Cy3 or the Cy5 dye to the normal-
ized volume of its corresponding internal standard labeled
with Cy2. The resulting ratios are called the standardized
abundances, and are denoted here by 1232, and R52,,,:

{ R32,, = NVolCy3,,/NVolCy2,,, }

R52,5 = NVolCy5,y/NVolCy2,,. M

The analyses in DeCyder are based on the standardized
log abundances of the proteins, defined as the logl0 of
the standardized abundances, denoted here by SLA32,,
and SLA52,,:

{ SLA32,, =1og 10(R32,,), }

SLA52,, = log 10(R52,,). @

Expression ratios corresponding to the standardized
abundances in Eq. (1) are defined as

[ R32,,, if R32,>1
ER32p _{ —1/R32,,, otherwise [’ )
and
[ R52,,, ifR52,, >1
ERS52pg = { —1/R52,,, otherwise [~ “)

A spot’s fold-change between two groups is calculated
as the ratio of the average standardized abundances: if
R, and R, denote the average standardized abundances
corresponding to the two groups, the fold-change F' is
Ri/Ry if Ry > Ry, and —Ry/R; otherwise. A k-fold
expression increase/decrease corresponds to a +k/ — k
value of F'.

3.3 Additional statistical analyses

The variables that resulted from the analysis with De-
Cyder were exported and converted to text files with

the XML Toolbox. Additional statistical analyses were
performed in the R open source computing environment
(http://www.r-project.org). Specifically, the marrayNorm
package from the Bioconductor project [5] was modified
to accommodate the slightly different data structures char-
acteristic to 2-D gels. In contrast with gene expression
arrays that typically have only one or two colors, the gels
have three separate measurements corresponding to the
three dyes. Once the microarray algorithms were appro-
priately modified for the gel data, the normalization pro-
ceeded similar to the microarray normalization. Three
different additional normalizations were performed, all
based on the same idea but involving different variables.
They are described in Sections 3.3.1, 3.3.2, and 3.3.3.

3.3.1 Additional normalization based on the stan-
dardized log abundances

The first normalization method involved normalizing the
standardized abundances from DeCyder. The standard-
ized abundances in Eq. (1) were first transformed into the
M — A space, where

{ MY = loga(R52,,/ R32p,), } )

AL =1/21ogy(R52,5 x R32,,).

A,(;? measures the Average, and M,%) (Minus) the differ-
ence between the two intensity ratios 32,4 and 52,
on a log scale. The superscript (1) merely indicates that
the values correspond to the first normalization type.
Under the assumption that the majority of the proteins
were not differentially expressed between the two condi-
tions (an assumption that is certainly satisfied under the
current experimental design of using the same sample on
each gel and dye), the plot of M}S;) Versus A](glg) (MvA) for
all the spots from a given gel should result in a random
scatter around the zero-line with no trends. Observed sys-
tematic variations may be due to variations in the labeling
efficiencies of the Cy3 and Cy5 dyes, as well as chang-
ing scanning settings, or gel effects. In microarrays, dye
imbalances often vary according to the average spot inten-
sity A [12]. Similar patterns were observed in the MvA
plots of the 2-D DIGE datasets, therefore local intensity-
dependent regression lines through the data were fitted us-
ing the loessFit function in R. Next, the M values were



replaced by the residuals from the fit which resulted in
pattern-free MvA plots.

The second normalization step used boxplots for
between-gel normalization. It involved comparing the
ranges of the regression-corrected M values across the
gels, and scaling them so that the middle 50 percent of
the data on each gel spanned the same range.

Let Méu},) and flz(,lg) denote the corrected values after
the MvA normalization within-gels and boxplot normal-
ization between-gels. Next, the inverse transformation of
Eq. (5) was used to transform M,E;) and A](glg) back to the
original scale of the ratios, and thus obtain the normalized
standardized abundances R32]%) and RE)Z%) correspond-
ing to Eq. (1). The final step was to transform the normal-
ized standardized abundances into the normalized stan-
dardized log abundances S LA321(,19) and S'LA521(,19) with
the logarithm transformation in Eq. (2). The standardized
log abundances from DeCyder were thus further normal-
ized.

3.3.2 Additional normalization based on the normal-
ized volumes

The second normalization method involved two separate
MvVA and boxplot normalizations of the type described in
Section 3.3.1. First, the normalized volumes (provided by
DeCyder) measured with the Cy3 dye were additionally
normalized to the normalized volumes measured with the
pooled standard Cy2. If

M2 = logs(NVolCy3,q/NVolCy2,,)
AR =1/210g5(NVolCy3,y x NVolCy2,,)

denote the normalized Cy2 and Cy3 volumes transformed
to the M — A space, let M},_?} and 1215,29) denote their cor-
rected values after the MvA normalization within-gels
and boxplot normalization between-gels. The M,E? and
fl%) values were next transformed back to the original
scale of the normalized volumes using the inverse trans-
formation in Eq. (6), and thus the additionally normal-
ized normalized volumes N Vole3z(,?,) and NV ol C’y21(37)

were obtained. Next, the ratios
H5ao(2) _ N 2) /& 2
R32() = NVolCy3(2) /NVolCy2!?) (7

were formed which corresponded to the normalized stan-
dardized abundances of the Cy3 to Cy2 ratios in Eq. (1).

A similar procedure was performed to additionally nor-
malize the normalized Cy5 volumes to the normalized
Cy2 volumes, and obtain

R521(§]) = NVolC’y5z(§])/]\~fVole2(2)

pg >’

®)

the normalized standardized abundances. The normaliza-
tion steps in the previous paragraph were executed, start-
ing with NV olCy5,, instead of NV olCy3,4 in Eq. (6).

The final step was to transform the normalized stan-
dardized abundances in Egs. (7) and (8) into the nor-

malized standardized log abundances 5‘LA32§,29) and

S LA52](£,) by applying the logarithm transformation.

3.3.3 Additional normalization based on the original
volumes

The third normalization method was identical to the
second procedure in Section 3.3.2 — the only differ-
ence was using the original volume measurements from
DeCyder rather than the normalized volumes. The
third set of additionally normalized standardized log
abundances S’LA32,(,‘Z) and SLA521(,?;) was obtained by
following the steps in Section 3.3.2 after substituting
VolCy2,4, VolCy3,4, and VolCyb,, for NVolCy2,,,
NVolCy3,4, and NVolCy5,,.

3.3.4 Adjusting the significance levels in multiple hy-
pothesis tests

6) Another challenge in the analysis of 2-D DIGE data that

is shared with the microarray data analysis community is
the massive multiple hypothesis problem [11]. To investi-
gate whether a protein is differentially expressed across
the conditions in a study, generally a statistical model
is fit at every spot in the experiment, and a hypothesis
test is performed to assess the significance of the ob-
served test statistic. If the observed significance level, or
p-value, is less than a specified significance level value
(say a = 0.05), then a statistically significant result is
declared. Regardless of the data used and the testing pro-
cedure employed, the resulting p-values need to be ad-
justed because numerous tests are performed simultane-
ously. The unadjusted p-values that result from the indi-
vidual tests applied separately at each spot are too opti-
mistic. At the a = 0.05 significance level, one in every



twenty tests is expected to result in a p-value less than «
just by chance. As the number of tests increases, so does
the number of false positives.

Several adjustment methods have been proposed in the
literature. The simplest one is the Bonferroni correc-
tion, which multiplies the unadjusted p-values by the total
number of tests performed. A less stringent, but more
practical approach for the present case is the false dis-
covery rate method of [3]. Let R denote the total num-
ber of rejected hypotheses, and V the number of falsely
rejected hypotheses, out from the total number of simul-
taneous tests. Then, the realized False Discovery Rate
(FDR) is defined as V/R, for R > 0, and 0 otherwise.
Since V' is unobserved, [3] developed a sequential p-value
procedure that controls the expected value of the FDR,
E(FDR), under the assumption that the test statistics are
independent. The resulting process controls E(FDR) at
the fixed level « for any joint distribution of the p-values.
Although the independence assumption is not always sat-
isfied, the FDR method is often used because of its sim-
plicity. Since its results are preferable over the unadjusted
p-values, here the FDR procedure in R was used.

4 Resultsand discussion

4.1 Comparison of the datasets

Fig. 2 displays the spot matching results for the three
experiments using gels poured in the lab. Fig. 3 shows
the corresponding results with the precast gels. Table 3
presents the corresponding bin counts and cumulative
matching percentages for the data in Figs. 2 and 3.
Notice the relatively high number of spots in the left-
most bins of the histograms in Figs. 2 and 3 (equivalently,
in the rightmost columns of Table 3): those spots were
matched on at most two gels, and include dust particles
and other artifacts identified on the master gel only. In
the case of the gels poured in the lab presented in Fig. 2,
filtering shown in panel (b) decreased the percentage of
spots that were matched on more than 8 gels from the
percentage observed in the original dataset in panel (a).
The filtering in panel (c) increased the percent of spots
matched on over 8 gels. Filtering also improved consider-
ably the quality of the matching for the precast gels: note
the higher percentage of spots matched on at least 8 gels

in Fig. 3(b) compared to Fig. 3(a), quantified in the 5th
and 4th rows of Table 3, respectively.

Overall, the results indicate that filtering did not im-
prove the matching compared to the baseline of no filter-
ing and no landmarking for the gels poured in the lab.
In contrast, landmarking improved the accuracy of the
matching, both for the gels poured in-house and the pre-
cast gels. Compared to the in-house gels, the precast gels
led to more accurate spot matching.

Tables 4 through 13 present summary statistics for the
spots-wise standard deviations of the standardized log
abundances for the five datasets. First, for each spot in
a dataset, the standard deviation of its standardized log
abundance in Eq. (2) over the gels in the dataset was cal-
culated. Next, spots were grouped based on the matching
results over the gels. The tables present summary statis-
tics of the distribution of the resulting standard deviations
over the subsets. As expected, the better the match was
in a subset of the spots, the less variation was observed
among the corresponding spots. Overall, there was less
variability in the precast gels than in the in-house gels in
each of the spot subsets considered.

Fig. 4 displays visually the trend of decreasing standard
deviation with increased matching accuracy: it shows
boxplots of the standard deviations of the standardized log
abundances for the PrecastNoFiltLandmrk dataset, split
by subsets of spots based on the matching. The values
correspond to the combined SLA32 and SLA52 data in
Table 13.

To ensure high confidence in the results, spots poorly
matched may be discarded from future statistical analysis.
Requiring that a spot be matched on at least 70% of the
gels (8 out of 12 gels here) seems like a reasonable crite-
rion. The corresponding reduction in the number of spots
reflects the current state of the art in spot detection and
matching in complex proteomic samples. In real biologi-
cal experiments, the biological variation among the sam-
ples will further complicate the spot detection and match-
ing, and will likely be of inferior quality.

Fig. 5 reveals an expected relationship between the
magnitude of the raw spot volumes and the quality of
the matching: the larger the volume the better the match.
Similar trends were observed for the other dyes and gels.
Considering two subsets of the spots: 1) those matched
on fewer than 8 gels and 2) those matched on at least
8 gels, the interquartile ranges for the logl0(VolCy2)
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Figure 2: Histogram of the number of gels a spot was matched on for the gels poured in the lab: (a) No filtering and
no landmarking (LabNoFiltNoLandmrk), (b) Filtering and no landmarking (LabFiltNoLandmrk), (c) No filtering and
landmarking (LabNoFiltLandmrk).
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Figure 3: Histogram of the number of gels a spot was matched on for the precast gels: (a) No filtering and no
landmarking (PrecastNoFiltNoLandmrk), (b) No filtering and landmarking (PrecastNoFiltLandmrk).

Table 3: The distribution of the spots in the five datasets based on their matching status across the twelve gels. The
columns indicate the number of gels a spot was matched on, in decreasing order from 12 to 1-2. The five rows
separated by the lines correspond to the five datasets. For each dataset, the first row in the column with header j
displays the number of spots matched on exactly j gels, for j = 12,11,...,1 — 2. The second row presents the
cumulative percentage of spots from the corresponding dataset matched on at least j gels.

Data ‘ 12 11 10 9 8 7 6 5 4 3 1-2

Lab 6 38 83 147 231 235 307 289 329 341 757
NoFiltNoLandmrk | 0.22 1.59 4.60 9.92 18.28 26.78 37.89 4835 60.26 72.60 100
Lab 0 9 30 81 164 207 236 284 270 291 822
FiltNoLandmrk 0 0.38 1.63 501 11.86 20.51 3037 4223 5351 65.66 100
Lab 128 116 146 182 194 255 292 265 246 243 426
NoFiltLandmrk | 5.13  9.79 1564 2294 30.73 4995 52.67 6330 73.16 8291 100
Precast 65 89 182 239 258 286 301 288 287 241 275
NoFiltNoLandmrk | 2.59  6.13  13.38 2290 33.17 44.56 56.55 68.02 79.45 89.05 100
Precast 169 167 213 248 258 260 260 237 229 202 268
NoFiltLandmrk | 6.73 13.38 21.86 31.74 42.02 5237 6272 71.16 81.28 89.33 100




Table 4: LabNoFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log abun-
dances for certain subsets of the spots. MatchStatus indicates the criteria of selecting the subsets, mainly the number
of gels the spots were matched on. The disjoint subsets include spots matched on all 12 gels, and spots matched on
either 2 j or (2% j+1) gels for j = 5,...,2. The NoSpots column indicates the number of spots that belonged to the
corresponding spot subset. The Data rows indicate which dyes the standardized log abundance ratios corresponded to:
only SLA32, only SLA52, or combined SLA32 and SLA52 from Eq. (2).

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 12 6 0.0470 0.0635 0.0706 0.0710 0.0783 0.0956
1011 121 0.0235 0.0452 0.0623 0.0661 0.0811 0.1459

89 378 0.0151 0.0480 0.0623 0.0673 0.0787 0.2273

67 542 0.0118 0.0506 0.0716 0.0862 0.1030 0.4492

4.5 618 0.0140 0.0562 0.0944 0.1183 0.1607 0.6160

23 742 0.0002 0.0570 0.1183 0.1509 0.2050 0.8842

SLA52 12 6 0.0344 0.0587 0.0662 0.0879 0.0697 0.2336
1011 121 0.0219 0.0433 0.0578 0.0704 0.0832 0.2554

89 378 0.0140 0.0431 0.0624 0.0767 0.0892 0.4051

6.7 542 0.0138 0.0511 0.0753 0.1152 0.1249 0.6754

4.5 618 0.0081 0.0639 0.1253 0.1929 0.2969 0.9457

23 742 0.0000 0.0833 0.2217 0.2948 0.4086 1.8840

SLA32 12 6 0.0423 0.0688 0.0713 0.0841 0.0797 0.1695
and 10_11 121 0.0289 0.0515 0.0649 0.0708 0.0801 0.1960
SLA52 89 378 0.0284 0.0509 0.0651 0.0756 0.0874 0.3186
6.7 542 0.0209 0.0550 0.0763 0.1150 0.1233 0.6611

4.5 618 0.0218 0.0642 0.1229 0.2018 0.3139 0.7369

23 742 0.0135 0.1472 0.3859 0.3807 0.5661 1.2850
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Table 5: LabNoFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log abun-
dances for certain subsets of the spots. MatchStatus indicates the criteria of selecting the subsets, mainly the number
of gels the spots were matched on. The subsets include spots matched on at least 2 * j gels for j = 5,...,1. The
NoSpots column indicates the number of spots that belonged to the corresponding spot subset. The Data rows indicate
which dyes the standardized log abundance ratios corresponded to: only SLA32, only SLA52, or combined SLA32
and SLA52 from Eq. (2).

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 10+ 127 0.0235 0.0461 0.0624 0.0663 0.0809 0.1459
8+ 505 0.0151 0.0476 0.0624 0.0670 0.0795 0.2273

6+ 1047 0.0118 0.0487 0.0668 0.0769 0.0889 0.4492

4+ 1665 0.0118 0.0502 0.0726 0.0923 0.1110 0.6160

2+ 2407 0.0002 0.0512 0.0788 0.1104 0.1349 0.8842

SLA52 10+ 127 0.0219 0.0449 0.0598 0.0712 0.0827 0.2554
8+ 505 0.0140 0.0432 0.0618 0.0753 0.0858 0.4051

6+ 1047 0.0138 0.0477 0.0673 0.0959 0.1029 0.6754

4+ 1665 0.0081 0.0507 0.0779 0.1319 0.1554 0.9457

2+ 2407 0.0000 0.0546 0.0948 0.1821 0.2501 1.8840

SLA32 10+ 127 0.0289 0.0516 0.0668 0.0714 0.0805 0.1960
and 8+ 505 0.0284 0.0512 0.0653 0.0746 0.0854 0.3186
SLA52 6+ 1047 0.0209 0.0526 0.0698 0.0955 0.0982 0.6611
4+ 1665 0.0209 0.0550 0.0778 0.1349 0.1478 0.7369

2+ 2407 0.0135 0.0605 0.1017 0.2107 0.3227 1.2850
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Table 6: LabFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log abundances
for certain subsets of the spots. Caption as in Table 4.

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 12 0 NA NA NA NA NA NA
10_11 39 0.0224 0.0443 0.0595 0.0666 0.0909 0.1230
89 245 0.0185 0.0472 0.0617 0.0679 0.0812 0.2009
6.7 443 0.0138 0.0438 0.0598 0.0678 0.0824 0.3154
4.5 554 0.0057 0.0439 0.0683 0.0831 0.1014 0.4700
23 657 0.0001 0.0434 0.0781 0.1102 0.1437 0.7815

SLA52 12 0 NA NA NA NA NA NA
10-11 39 0.0280 0.0538 0.0735 0.0789 0.0930 0.1943
89 245 0.0222 0.0471 0.0604 0.0729 0.0849 0.2982
6.7 443 0.0095 0.0452 0.0625 0.0762 0.0848 0.4502
4.5 554 0.0084 0.0487 0.0773 0.1101 0.1219 0.6919
23 657 0.0001 0.0630 0.1462 0.2591 0.3382 2.0300

SLA32 12 0 NA NA NA NA NA NA
and 10-11 39 0.0266 0.0561 0.0676 0.0737 0.0915 0.1571
SLAB52 89 245 0.0293 0.0502 0.0605 0.0717 0.0821 0.2271
6.7 443 0.0218 0.0496 0.0635 0.0748 0.0859 0.3540
4.5 554 0.0180 0.0520 0.0730 0.1044 0.1210 0.5528
23 657 0.0092 0.0777 0.1720 0.2654 0.4023 1.3380

Table 7: LabFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log abundances
for certain subsets of the spots. Caption as in Table 5.

Data |MatchStatus NoSpots Min 1stQu Med Mean 3rdQu  Max

SLA32 10+ 39 0.0224 0.0443 0.0595 0.0666 0.0909 0.1230
8+ 284 0.0185 0.0466 0.0615 0.0677 0.0819 0.2009

6+ 727 0.0138 0.0453 0.0603 0.0678 0.0824 0.3154

4+ 1281 0.0057 0.0444 0.0632 0.0744 0.0890 0.4700

2+ 1938 0.0001 0.0444 0.0670 0.0865 0.1013 0.7815

SLA52 10+ 39 0.0280 0.0538 0.0735 0.0789 0.0930 0.1943
8+ 284 0.0222 0.0480 0.0620 0.0738 0.0870 0.2982

6+ 727 0.0095 0.0467 0.0624 0.0752 0.0860 0.4502

4+ 1281 0.0084 0.0471 0.0671 0.0903 0.0978 0.6919

2+ 1938 0.0001 0.0496 0.0779 0.1475 0.1473  2.0300

SLA32 10+ 39 0.0266 0.0561 0.0676 0.0737 0.0915 0.1571
and 8+ 284 0.0266 0.0506 0.0620 0.0720 0.0823 0.2271
SLA52 6+ 727 0.0218 0.0502 0.0633 0.0737 0.0841 0.3540
4+ 1281 0.0180 0.0506 0.0669 0.0870 0.0952 0.5528

2+ 1938 0.0092 0.0544 0.0781 0.1474 0.1590 1.3380
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Table 8: LabNoFiltLandmrk dataset: summary statistics for the standard deviations of the standardized log abundances
for certain subsets of the spots. Caption as in Table 4.

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 12 128 0.0130 0.0292 0.0385 0.0467 0.0549 0.1737
10_11 262 0.0163 0.0358 0.0498 0.0570 0.0692 0.1799

89 376 0.0130 0.0435 0.0588 0.0692 0.0788 0.3452

6.7 547 0.0167 0.0496 0.0654 0.0812 0.0938 0.5712

4.5 511 0.0056 0.0483 0.0796 0.1139 0.1418 0.6667

23 503 0.0002 0.0494 0.0989 0.1501 0.2136 0.7539

SLA52 12 128 0.0125 0.0251 0.0320 0.0422 0.0494 0.1400
10-11 262 0.0145 0.0316 0.0465 0.0576 0.0684 0.2823

89 376 0.0132 0.0366 0.0540 0.0707 0.0827 0.4103

6.7 547 0.0090 0.0414 0.0640 0.0945 0.1048 0.8615

4.5 511 0.0028 0.0499 0.0866 0.1586 0.2106 0.9313

23 503 0.0003 0.0697 0.1749 0.2418 0.3621 1.3410

SLA32 12 128 0.0188 0.0348 0.0418 0.0494 0.0557 0.1595
and 10-11 262 0.0174 0.0401 0.0536 0.0627 0.0744 0.2122
SLA52 89 376 0.0183 0.0452 0.0613 0.0758 0.0879 0.3724
6.7 547 0.0164 0.0486 0.0681 0.0975 0.1094 0.7089

4.5 511 0.0093 0.0555 0.0893 0.1490 0.2025 0.7355

23 503 0.0069 0.0966 0.2196 0.2521 0.3681 0.9069

Table 9: LabNoFiltLandmrk dataset: summary statistics for the standard deviations of the standardized log abundances
for certain subsets of the spots. Caption as in Table 5.

Data |MatchStatus NoSpots Min 1stQu Med Mean 3rdQu  Max

SLA32 10+ 390 0.0130 0.0326 0.0454 0.0537 0.0635 0.1799
8+ 766 0.0130 0.0371 0.0527 0.0613 0.0725 0.3452

6+ 1313 0.0130 0.0400 0.0569 0.0696 0.0813 0.5712

4+ 1824 0.0056 0.0419 0.0610 0.0820 0.0932 0.6667

2+ 2327 0.0002 0.0428 0.0646 0.0967 0.1085 0.7539

SLA52 10+ 390 0.0125 0.0288 0.0410 0.0525 0.0638 0.2823
8+ 766 0.0125 0.0317 0.0474 0.0615 0.0742 0.4103

6+ 1313 0.0090 0.0340 0.0527 0.0752 0.0844 0.8615

4+ 1824 0.0028 0.0370 0.0596 0.0986 0.1040 0.9313

2+ 2327 0.0003 0.0398 0.0679 0.1295 0.1481 1.3410

SLA32 10+ 390 0.0174 0.0374 0.0480 0.0584 0.0680 0.2122
and 8+ 766 0.0174 0.0404 0.0552 0.0669 0.0770 0.3724
SLA52 6+ 1313 0.0164 0.0432 0.0603 0.0796 0.0884 0.7089
4+ 1824 0.0093 0.0459 0.0649 0.0991 0.1083 0.7355

2+ 2327 0.0069 0.0478 0.0743 0.1321 0.1595 0.9069
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Table 10: PrecastNoFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log
abundances for certain subsets of the spots. Caption as in Table 4.

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 12 65 0.0188 0.0321 0.0384 0.0445 0.0506 0.0908
10_11 271 0.0154 0.0310 0.0392 0.0453 0.0519 0.3571

89 497 0.0112 0.0304 0.0433 0.0520 0.0617 0.4767

6.7 587 0.0065 0.0350 0.0485 0.0624 0.0736 0.5772

4.5 575 0.0050 0.0373 0.0581 0.0899 0.0999 0.7215

23 423 0.0000 0.0321 0.0642 0.1126 0.1242 0.9734

SLA52 12 65 0.0176  0.0298 0.0407 0.0450 0.0542 0.1151
10-11 271 0.0141 0.0316 0.0397 0.0450 0.0517 0.3045

89 497 0.0086 0.0304 0.0441 0.0538 0.0598 0.5264

6.7 587 0.0089 0.0340 0.0472 0.0642 0.0714 0.6332

4.5 575 0.0047 0.0335 0.0545 0.0919 0.0966 0.8518

23 423 0.0004 0.0267 0.0568 0.1089 0.1166 0.9695

SLA32 12 65 0.0213 0.0322 0.0448 0.0460 0.0534 0.0988
and 10-11 271 0.0207 0.0343 0.0423 0.0473 0.0529 0.3230
SLA52 89 497 0.0157 0.0334 0.0462 0.0574 0.0652 0.4665
6.7 587 0.0137 0.0369 0.0509 0.0710 0.0798 0.5791

4.5 575 0.0107 0.0422 0.0686 0.1066 0.1322 0.6963

23 423 0.0036 0.0457 0.0787 0.1276  0.1471 0.7886

Table 11: PrecastNoFiltNoLandmrk dataset: summary statistics for the standard deviations of the standardized log
abundances for certain subsets of the spots. Caption as in Table 5.

Data |MatchStatus NoSpots Min 1stQu Med Mean 3rdQu  Max

SLA32 10+ 336 0.0154 0.0313 0.0391 0.0451 0.0519 0.3571
8+ 833 0.0112 0.0308 0.0414 0.0492 0.0574 0.4767

6+ 1420 0.0065 0.0318 0.0440 0.0547 0.0634 0.5772

4+ 1995 0.0050 0.0329 0.0472 0.0648 0.0710 0.7215

2+ 2418 0.0000 0.0328 0.0486 0.0732 0.0769 0.9734

SLA52 10+ 336 0.0141 0.0314 0.0398 0.0450 0.0519 0.3045
8+ 833 0.0086 0.0310 0.0418 0.0502 0.0571 0.5264

6+ 1420 0.0086 0.0316 0.0439 0.0560 0.0625 0.6332

4+ 1995 0.0047 0.0320 0.0458 0.0664 0.0698 0.8518

2+ 2418 0.0004 0.0313 0.0467 0.0738 0.0748 0.9695

SLA32 10+ 336 0.0207 0.0336 0.0424 0.0471 0.0529 0.3230
and 8+ 833 0.0157 0.0335 0.0445 0.0533 0.0593 0.4665
SLA52 6+ 1420 0.0137 0.0350 0.0468 0.0606 0.0674 0.5791
4+ 1995 0.0107 0.0362 0.0498 0.0738 0.0787 0.6963

2+ 2418 0.0036 0.0370 0.0524 0.0833 0.0877 0.7886
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Table 12: PrecastNoFiltLandmrk dataset: summary statistics for the standard deviations of the standardized log abun-
dances for certain subsets of the spots. Caption as in Table 4.

Data |MatchStatus NoSpots Min 1stQu Med Mean  3rdQu Max

SLA32 12 169 0.0164 0.0310 0.0389 0.0431 0.0502 0.1551
10_11 380 0.0070  0.0294 0.0394 0.0460 0.0562 0.2354

89 506 0.0113 0.0308 0.0423 0.0531 0.0612 0.4178

6.7 520 0.0090 0.0330 0.0476 0.0638 0.0722 0.5959

4.5 466 0.0066 0.0344 0.0556 0.0816 0.0929 0.6707

23 373 0.0011 0.0272 0.0571 0.1006 0.1057 0.7920

SLA52 12 169 0.0166 0.0315 0.0400 0.0452 0.0512 0.1533
10-11 380 0.0114 0.0294 0.0385 0.0467 0.0541 0.2605

89 506 0.0068 0.0284 0.0391 0.0490 0.0586 0.4423

6.7 520 0.0087 0.0302 0.0424 0.0598 0.0661 0.6620

4.5 466 0.0068 0.0307 0.0488 0.0782 0.0811 0.7563

23 373 0.0004 0.0260 0.0519 0.1037 0.1035 1.0570

SLA32 12 169 0.0192 0.0342 0.0404 0.0465 0.0539 0.1831
and 10-11 380 0.0167 0.0334 0.0424 0.0511 0.0568 0.2010
SLA52 89 506 0.0144 0.0324 0.0441 0.0582 0.0677 0.4183
6.7 520 0.0137 0.0356 0.0496 0.0718 0.0822 0.6022

4.5 466 0.0182 0.0406 0.0611 0.0983 0.1249 0.6678

23 373 0.0096 0.0397 0.0642 0.1239 0.1446 0.7889

Table 13: PrecastNoFiltLandmrk dataset: summary statistics for the standard deviations of the standardized log abun-
dances for certain subsets of the spots. Caption as in Table 5.

Data |MatchStatus NoSpots Min 1stQu Med Mean 3rdQu  Max

SLA32 10+ 549 0.0070  0.0298 0.0393 0.0451 0.0533 0.2354
8+ 1055 0.0070  0.0303 0.0410 0.0489 0.0571 0.4178

6+ 1575 0.0070  0.0308 0.0429 0.0539 0.0608 0.5959

4+ 2041 0.0066 0.0316 0.0448 0.0602 0.0661 0.6707

2+ 2414 0.0011 0.0312 0.0456 0.0664 0.0704 0.7920

SLA52 10+ 549 0.0114 0.0304 0.0392 0.0462 0.0534 0.2605
8+ 1055 0.0068 0.0294 0.0392 0.0476 0.0562 0.4423

6+ 1575 0.0068 0.0296 0.0402 0.0516 0.0586 0.6620

4+ 2041 0.0068 0.0298 0.0418 0.0577 0.0622 0.7563

2+ 2414 0.0004 0.0294 0.0427 0.0648 0.0652 1.0570

SLA32 10+ 549 0.0167 0.0336 0.0422 0.0497 0.0558 0.2010
and 8+ 1055 0.0144 0.0330 0.0427 0.0538 0.0597 0.4183
SLA52 6+ 1575 0.0137 0.0338 0.0446 0.0597 0.0665 0.6022
4+ 2041 0.0137 0.0346 0.0471 0.0685 0.0750 0.6678

2+ 2414 0.0096 0.0350 0.0489 0.0771 0.0827 0.7889
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Figure 4: The distribution of the spot-wise standard de-
viations of the combined standardized log abundances for
the PrecastNoFiltLandmrk dataset, split by the matching
status of the spots: 02_03 includes spots matched on 2 or
3 gels, 12 includes spots matched an all 12 gels.

corresponding to the two sets are 1) [4.089,4.842] and
2) [4.843,5.786]. Therefore, an empirical rule to select
spots to include in the analysis in future experiments with
human serum is to consider only spots with normalized
volumes over 70,000 (10%342).

4.2 Effect of additional normalizations

This section presents the results of additional statistical
normalizations performed on the data that resulted from
DeCyder. Only results with the PrecastNoFiltLanmrk ex-
periment are reported, which was the best of the five sets
considered. The corresponding analyses with the other
four datasets yielded similar results, and are omitted for
brevity. Their details are available upon request.

Fig. 6 displays the M — A plots for four gels, obtained
through the transformation in Eq. (5) with the first nor-
malization method in Section 3.3.1. Fig. 7 shows the
corresponding M — A plots after correcting the intensity-
dependent bias with a local regression fit. Fig. 8 shows the
boxplots of the data before and after the normalization in
Section 3.3.1 based on further correcting the standardized
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Figure 5: Boxplot of the logl10 of the original Cy2 vol-
umes of the spots on the first gel in the PrecastNoFilt-
Landmrk dataset, as a function of the number of gels a
spot was matched on.

log abundances from DeCyder. The two alternative nor-
malization methods (based on the normalized volumes in
Section 3.3.2, and on the volumes in Section 3.3.3, re-
spectively) yielded qualitatively similar results.

Figs. 9 and 10 display the densities and boxplots of the
original and the three normalized standardized log abun-
dances separately for the twelve gels and two color ra-
tios. The apparent differences between the red and green
density estimates on the twelve gels in the first panel of
Fig. 9 are mitigated by all three normalization methods,
and especially by the last two methods explained in Sec-
tions 3.3.2 and 3.3.3.

Based on the distribution of the expression ratios on
the gels, prediction intervals for the expression ratios on
a future gel can be constructed. Given the mean ms 5 and
sample variance s3 - of the twelve 2.5 percentile values
of the expression ratios K R32 or ER52 from Eqgs. (3) or
(4) corresponding to the twelve gels, an approximate 95%
prediction limit for the 2.5 percentile on a future gel can
be obtained as follows: mo 5 & to /2 n—152.51/1+ 1/n,
where n 12 is the number of gels, « 0.05
and t4/2,—1 is the 100(1 — «/2) percentile of the ¢-
distribution with (n — 1) degrees of freedom. Similar
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Figure 6: M — A plots for four gels in the PrecastNoFiltLandmrk experiment corresponding to the normalization
method in Section 3.3.1.
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Figure 7: The normalized M — A plots for four gels in the PrecastNoFiltLandmrk experiment corresponding to the
normalization method in Section 3.3.1.
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Figure 8: Boxplots of the M-values for the twelve gels from the PrecastNoFiltLandmrk dataset based on the: (a)
original standardized log abundances, (b) within-gel normalized values using the method in Section 3.3.1, and (c)
within- and between-gel normalized standardized log abuh8ances using the method in Section 3.3.1.
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Figure 9: Density estimates of the standardized log abundances from the PrecastNoFiltLandmrk dataset: (a) original
standardized log abundances from DeCyder, (b) normalized with the method in Section 3.3.1, (¢) normalized with the
method in Section 3.3.3, and (d) normalized with the method in Section 3.3.2. Two lines for each of the twelve gels
corresponding to the distributions of SLA32 (green) and 30 A52 (red).
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Figure 10: Boxplots of the standardized log abundances from the PrecastNoFiltLandmrk dataset: (a) original stan-
dardized log abundances from DeCyder, (b) normalized with the method in Section 3.3.1, (¢) normalized with the
method in Section 3.3.3, and (d) normalized with the method in Section 3.3.2. Two lines for each of the twelve gels
corresponding to the distributions of SLA32 (green) and 1L A52 (red).



Table 14: 95% prediction intervals for the expression ra-
tios on a future gel. Columns indicate the subsets of
the spots used in the calculations, rows the dataset used.
SLA: based on the original standardized log abundance
data from DeCyder; SLAM: based on the additionally
normalized data using the standardized log abundances in
Section 3.3.1; SLA®): based on the additionally normal-
ized data using the normalized volumes in Section 3.3.2;
SLA®): based on the additionally normalized data using
the original volumes in Section 3.3.3.

Data | All spots Spots matched on 8+ gels

SLA | [-2.55,6.87] [-1.84, 1.90]
SLAM | [-2.14,7.50] [-1.61, 1.99]
SLA® | [-1.99,5.95] [-1.53, 1.80]
SLA®) | [-1.99,5.95] [-1.53, 1.80]

prediction interval can be constructed for the 97.5th per-
centiles. Since the distributions of the standardized log
abundances corresponding to the two dyes on the same
gel did not exhibit systematic differences, they were com-
bined in the calculation of the prediction intervals. The
effective sample size was then doubled to n = 24.

The first row and column of Table 14 presents the com-
bined 95% prediction intervals for the 2.5th and 97.5th
percentiles, based on the standardized log abundances for
all the spots from the PrecastNoFiltLandmrk data. The
interval provides an estimate on how large expression ra-
tio values will likely have to be in order to correspond to
real effects in future experiments similar to this one. Ac-
cording to the results, a biological sample will have to be
down-regulated about 2.5-fold or up-regulated by more
than 6-fold to be significant at the 5% level.

The second, third, and fourth rows present the cor-
responding results based on the standardized log abun-
dances that were additionally normalized using the meth-
ods in Sections 3.3.1,3.3.2, and 3.3.3, respectively. The
second and third normalization methods led to identical
results up to two decimal points, and reduced the length
of the previous prediction interval.

The prediction limits in the first column of Table 14
can be tightened by considering certain subsets of the
spots. The second column contains the corresponding re-
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sults when including only the spots that were matched on
at least eight of the twelve gels.

Many publications using DIGE report 1.2-fold change
differences as biologically significant. A careful reading
of the main DIGE reference paper on which the 1.2-fold
change requirement is based on [13] reveals that the claim
that DIGE can detect a 1.2-fold change is valid only for a
subset of the spots (spot volumes in a certain range). Table
6 of [13] is similar to Table 14 here. For the best subset
of spots, the lower and upper limits of the prediction in-
tervals in Table 6 of [13] are [—1.2,1.2]. In addition to
the best-case scenario, Table 6 of [13] presents additional
intervals for different subsets of spots. Note that a fold-
change as large as 29.1 is also part of that table, even for
the simpler biological samples (mouse liver homogenates)
studied in that paper.

Table 15 summarizes the distributions of the spot-wise
standard deviations of the three additionally normalized
datasets. All three normalization methods reduced the
spot-wise standard deviations across the gels, as evi-
denced by comparing Table 13 to Table 15. In gen-
eral, the method in Section 3.3.1 resulted in the largest
improvement, but the results based on the methods in
Sections 3.3.2 and 3.3.3 were close. For the combined
SLA32 and SLA52 data using the spots matched on
at least 10 gels, the standard deviation reduction from
0.0422 in Table 13 to 0.0391 in Table 15 corresponds to
a 14.15% reduction in the variance. Using only the spots
matched on at least 70% of the gels, i.e. matched on at
least 8 gels, the corresponding standard deviation reduc-
tion from 0.0427 to 0.0406 is equivalent to a 9.60 percent
reduction in the variance.

The three additional normalization methods led to more
dramatic decreases in the standard deviations in the other
four datasets described in Section 3. Our interpretation is
that the better quality the gels are, the less profound effect
the extra normalization steps have. However, if resources
prohibit repeating experiments that have relatively poor
quality gels, the extra normalization steps can mitigate the
problems and increase the confidence in the results.

To investigate the effect of normalization on the iden-
tification of “differentially expressed” spots, a one-fay
fixed effect Analysis of Variance (ANOVA) model was
fitted first to the original standardized log abundances,
then to the additionally normalized standardized log abun-
dances. Assuming no dye or gel effects, the goal was to



Table 15: Normalized PrecastNoFiltLandmrk dataset: summary statistics for the standard deviations of the normalized
standardized log abundances based on three different normalizations. Caption as in Table 5. For each subset, the first
row is based on normalizing the standardized log abundances (Section 3.3.1), the second on normalizing the the
normalized volumes (Section 3.3.2), the third on normalizing the original volumes (Section 3.3.3).

Data ‘MatChStatus NoSpots Min 1stQu Med Mean 3rdQu Max

SLA32 10+ 549 0.0081 0.0277 0.0372 0.0434 0.0507 0.2019
0.0097 0.0282 0.0368 0.0435 0.0516 0.2831
0.0097 0.0283 0.0368 0.0435 0.0516 0.2832
8+ 1055 0.0081 0.0281 0.0383 0.0471 0.0548 0.4135
0.0081 0.0284 0.0390 0.0473 0.0549 0.4312
0.0081 0.0284 0.0390 0.0473  0.0549 0.4313
6+ 1575 0.0069 0.0291 0.0405 0.0525 0.0596 0.5598
0.0081 0.0295 0.0414 0.0531 0.0593 0.5907
0.0081 0.0295 0.0414 0.0531 0.0593 0.5908
4+ 2041 0.0054 0.0299 0.0428 0.0590 0.0645 0.6137
0.0072  0.0302 0.0436  0.0584 0.0648 0.6381
0.0072  0.0302 0.0435 0.0584 0.0648 0.6377
2+ 2414 0.0005 0.0293 0.0434 0.0643 0.0697 0.8786
0.0002 0.0300 0.0440 0.0629 0.0666 0.7846
0.0002 0.0300 0.0440 0.0629 0.0666 0.7836
SLA52 10+ 549 0.0142 0.0300 0.0384 0.0443 0.0520 0.1853
0.0087 0.0298 0.0372  0.0447 0.0528 0.2130
0.0087 0.0298 0.0372 0.04477 0.0528 0.2130
8+ 1055 0.0092 0.0291 0.0388 0.0464 0.0545 0.4448
0.0080 0.0288 0.0381 0.0459 0.0537 0.4178
0.0080 0.0288 0.0380 0.0458 0.0537 0.4180
6+ 1575 0.0081 0.0295 0.0403 0.0507 0.0579 0.6985
0.0080 0.0290 0.0390 0.0497 0.0560 0.6548
0.0080 0.0290 0.0390 0.0496 0.0560 0.6547
4+ 2041 0.0060 0.0300 0.0418 0.0565 0.0626 0.8264
0.0029 0.0292 0.0402 0.0540 0.0592 0.7643
0.0028 0.0292 0.0402 0.0540 0.0593 0.7641
2+ 2414 0.0011 0.0295 0.0425 0.0628 0.0660 1.0260
0.0000 0.0286 0.0405 0.0588 0.0628 1.0910
0.0000 0.0286 0.0405 0.0588 0.0628 1.0910
SLA32 10+ 549 0.0164 0.0312 0.0391 0.0474 0.0527 0.1944
0.0136 0.0314 0.0391 0.0475 0.0538 0.2222
0.0135 0.0314 0.0391 0.0475 0.0538 0.2223
and 8+ 1055 0.0160 0.0310 0.0406 0.0517 0.0580 0.4166
0.0136 0.0313 0.0411 0.0516 0.0576 0.4132
0.0135 0.0313 0.0411 0.0516 0.0576 0.4133
SLA52 6+ 1575 0.0115 0.0318 0.0426 0.0579 0.0637 0.6042
0.0136 0.0323 0.0431 0.0574 0.0630 0.5961
0.0135 0.0323 0.0431 0.0574 0.0630 0.5960
4+ 2041 0.0115 0.0327 0.0453 0.0661 0.0733 0.6797
0.0135 0.0333 0.0460 0.0642 0.0700 0.6549
0.0135 28.0333 0.0460 0.0642 0.0700 0.6547
2+ 2414 0.0049 0.0331 0.0468 0.0733 0.0784 0.7692
0.0124 0.0338 0.0474 0.0703  0.0758 0.7959
0.0124 0.0338 0.0474 0.0703  0.0758 0.7953




Table 16: The number of spots with greater than 1.5 fold-
change between any two samples, and with ANOVA sam-
ple effect p-value less than 0.05, as a function of the sub-
set of the spots and the type of p-value used, in the for-
mat is ny /ng, where ny corresponds to the standardized
log abundance data, and ns to the additionally normalized
standardized log abundance data. Total number of spots:
2511. Number of spots matched on 8+ gels: 1055.

All spots  Matched
on 8+
p-value | 111/74 53/29
FDR-adj p-value 33/16 36/17

investigate the number spots that showed differential ex-
pression among the 8 samples A through H. Per the exper-
imental design in Figure 1, three replicates were available
from each of the 8 samples. Since the samples were bi-
ologically identical on each of the gels, the observed dif-
ferentially expressed spots provide a measure of the tech-
nical variability.

Table 16 summarizes the results in terms of the num-
ber of spots that satisfied the following criterion: at least
1.5 fold-change between any two samples of the eight and
ANOVA p-value for sample effect less than 0.05. The
two rows indicate whether unadjusted or FDR-adjusted
p-values were used. The columns differentiate the type
of data used when fitting the model (original standardized
log abundances from DeCyder or the additionally normal-
ized standardized log abundances using the normaliza-
tion method in Section 3.3.1), and the subset of the data
used (whether all spots were included or only the spots
matched on at least 8 gels). The additional normalization
decreased the number of potential spots to consider in ev-
ery case. In the most relevant case of using only spots
matched on at least 8 gels and the adjusted p-value, the
reduction in false positives is over 50% (17 vs 36).

5 Summary

We described and evaluated several statistical methods to
normalize the data across different dyes and gels in com-
plex 2-D DIGE experiments. Algorithms from the mi-
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croarray analysis community provided the basis of the
methods. We demonstrated the effects of the proposed
methods in correcting for biases observed in the protein
expressions measured with different dyes on the same gel,
as well as in correcting inconsistencies observed in pro-
tein expressions due to differences in the gels. As a re-
sult of the additional normalizations, the spot-wise vari-
ances across the gels were reduced by about 10%, which
increased the reliability of the system and the confidence
in the methods. The new protein expression normaliza-
tion methods coupled with the statistically necessary p-
value adjustment reduced the number of potentially dif-
ferentially expressed spots by more than half.

A balanced design instead of Table 1 would have been
more efficient in testing the effects of filtering and land-
marking but was not possible due to limited resources. Al-
though the present study did not find compelling evidence
for the use of filtering, a better designed study using the
best quality gels and a carefully selected combination of
filter thresholds may determine the optimal set of filters.

Continued advances in 2-D DIGE gel technology are
improving the quality of the data, and the viability of the
platform to detect differential protein expression in bio-
logical samples with confidence, and in a reproducible
manner. The quality of precast gels has improved consid-
erably since the first experiment reported in this study. At
that time, precast gels were not reliable, and thus experi-
menters had to pour their own gels. Based on our findings,
the newly available precast gels are more consistent than
gels poured in the lab, and are thus preferable for use in
future experiments.

In addition to technological advances, the quality of
the DeCyder software is also maturing. The latest re-
lease (version 6.0) includes an improved spot detection
and matching algorithm, as well as p-value correction for
multiple hypothesis testing.

Areas where further improvements over the existing
methods would benefit the 2-D DIGE community in-
clude experimental design, image processing, and statisti-
cal modeling and testing to assess the differential expres-
sion of proteins in complicated experiments.

The methods evaluated here are implemented in soft-
ware and are readily available for use in 2-D DIGE pro-
teomics experiments throughout the lab. Use of the advo-
cated statistical procedures adds more rigor to the analysis
and interpretation 2-D DIGE experiments.
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